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Abstract. This paper describes a Kalman filter chemical data assimilation system and

its use for analysing a vertical atmospheric profile during January 1992. The vertical pro-

file was at an equivalent PV latitude (_e) of 55°S and consisted of 21 potential temper-

ature (0) levels spaced equally in log(0) between 400 K and 2000 K. This equivalent lat-

itude was chosen as it was well observed during January 1992 by instruments on board

the Upper Atmosphere Research Satellite (UARS).

1. Introduction

Measurements of atmospheric constituents made over

the last decade or more have cost many millions of dol-

lars/pounds to make. The intelligent use of this data on

a wide variety of species is a non-trivial task as the ob-

servations are not co-located in time or space. Satellites

make measurements of atmospheric constituents by a range

of methods, and at a range of times and locations. The mea-

surements are not made on a regular spatial grid or at the

same times of day. Since the analysis of satellite measure-

meat is so complex, the measurements have not been used

to their full potential.

In comparison to the analysis of meteorological variables,

chemical trace species has received little attention. Current

methods tend to be either simple comparisons of observa-

tions with a model (which are not necessarily constrained to

be directly comparable) and/or treat species independently,

ignoring the complex balances which exist between species.

Moreover, the large diurnal variations in the concentrations

of many species are either accounted for in very simple ways,

or avoided by analysing concentrations at fixed local time.

This is a great shame as the shape of a species diurnal cy-

cle, and the relative partitioning between species, contains

a lot of valuable information that is completely wasted if we

do not use a technique such that can exploit this informa-

tion. Naturally such information can only be exploited if

it includes a theoretical understanding of the chemical sys-

tem. Data assimilation is a valuable assistant in making

better use of observations of atmospheric chemistry. This

paper describes a Kalman filter for chemical data assim-

ilation with observation quality control and analyses skill

assessment cast in flow-tracking coordinates.
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2. Flow-Tracking Coordinate System

We want to look at the detailed interactions between

chemical species and exploit the propagation of information

between chemical species by using a Kalman filter which

calculates the time evolution of the full co-variance ma-

trix. This is expensive and so as a first step we will take

a lagrangian approach. To give us global analyses we then

use a two-dimensional array of independent time evolving

chemical box models (described in section 3). This two-

dimensional array is arranged in an equivalent-PV latitude

theta flow tracking co-ordinate system [Lary et at., 1995a].

This approximation is certainly valid for our analysis inter-

val of one day, and often for up to ten days. It is a way

of largely separating the effects of chemistry and dynamics.

Because a major component of the variability of trace gases

is due to the atmospheric motions we use a co-ordinate sys-

tem to perform our data assimilation that 'moves' with the

large scale flow pattern.

In addition, the Kalman filter chemical data assimilation

is computationally expensive, one diurnal cycle for one verti-

cal profile taking 35 minutes of computer time on a 1.7 GHz

intel pentium IV computer (this includes the first guess, as-

similation, and analyses run). So it is useful to have a global

2D assimilation by using an equivalent PV latitude (¢e),

potential temperature (0) co-ordinate system. Our grid has

21 potential temperature levels spaced equally in log(0) be-

tween 400 K and 2000 K, and 32 equivalent PV latitudes

spaced evenly between -90 ° and 90 ° . Here we consider in

detail just one of these 32 profiles, the one at 55°S as it was

well observed during January 1992 by instruments aboard

the Upper Atmosphere Research Satellite (UARS).

3. Chemical Scheme

We use the extensively validated AutoChem model de-

scribed [Fisher and Lary, 1995; Lary et al., 1995b; Lary,

1996]. The model is explicit and uses an adaptive-timestep,
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error monitoring time integration scheme for stiff systems

of equations [Stoer and Bulirsch, 1980; Press et al., 1992].

AutoChem was the first model to ever have the facility to

perform 4D variational data assimilation (4D-VAn) [Fisher

and Lary, 1995] and now also includes a Kalman filter [Khat-

tatov et al., 1999]. AutoChem uses kinetic data largely based

on [DeMote et al., 1997] and [Atkinson et al., 1997].

Our usual chemical system contains a total of 60 species.

55 species are time integrated, namely: O(1D), O(3P),

O3, N, NO, NO2, NOn, N205, HONO, HNOa, HO_NO2,

CN, NCO, HCN, Cl, C12, CIO, CIOO, OC10, C1202,

C1NO2, CIONO, ClONO2, HCI, HOC1, CH3OCl, Br, Br2,

BrO, BrONO2, BrONO, HBr, HOBr, BrCl, H_, H, OH,

HO2, H202, CH3, CH30, CH30:, CHaOH, CHaOOH,

CH3ONO2, CHaO2NO_, HCO, HCHO, CH4, CHaBr,

CF2CI2, CO, N20, CO2, H20. The remaining 5 species

are not integrated and not in photochemical equilibrium,

namely: 02, N_, HCI(s), H20(s), HNOa(s). The model con-

tains a total of 420 reactions, 278 bimolecular reactions, 32

trimolecular reactions, 60 photolysis reactions, 4 cosmic ray

processes, 46 heterogeneous reactions.

3.1. Radiative Transfer Calculations

A key part of the chemical model is the calculation of pho-

tolysis rates. In this study photolysis rates are calculated

using full spherical geometry and multiple scattering [Lary

and Pyle, 1991a, b; Meier et al., 1982; Nicolet et al., 1982]

with a treatment of spherical geometry [Anderson, 1983].

The photolysis rate used for each time step is obtained by

ten point Gaussian-Legendre integration [Press et al., 1992].

These calculations are updated on every assimilation itera-

tion to ensure that the improved ozone profile at a given

equivalent latitude is used to calculate the photolysis rates.

4. Quality Control

Observation quality control is a central part of chemical

data a_ssimilation. Our system transforms the observations

into a flow tracking coordinate system. We then use many

observations to produce a single pseudo observation profile.

We then deal with a complete pseudo observation profile at

a time.

No observation is used unless the ratio of the observa-

tional error, a, to the observed concentration, X, which we

will call the quality ratio, Qr, does not exceed a certain

specified threshold (1).

Q_= _- (l)
X

The value of this threshold is specified for each observed

species separately based on the characteristics of the instru-

ment involved. This criteria has proved to be important in

removing rouge observations and is recommended to others

engaged in chemical data assimilation. In addition there is

option that an observation is only used if with its associated

uncertainty it overlaps the current analysis concentration

and its associated uncertainty (this criteria is not always

applied as it can lead to an incestuous relationship between

the observations chosen and the analyses). We usually have

two iterations of the Kalman filter, the first using all obser-

vations that passed the quality ratio test, and the second

where the analyses state is also used to perform quality con-

trol.

4.1. Generation of the Pseudo Observations

Generating a pseudo observation is necessary for the as-

similation as both the observation and analyses need to be

dealing with the same location. In addition, it allows an

improved signal to noise as many observations are used in

forming just one psuedo observation.

We have chosen to deal with a profile of pseudo observa-

tions at a time as the two quality control criteria mentioned

above can lead to gaps in our vertical profile. These are easy

to fill in by eye, but for an algorithm to deal with the data

voids we need to consider an entire profile at a time in our

flow tracking co-ordinate space. In a full 3D assimilation the

3D co-variance matrix would be performing this task. How-

ever, in this study we are using a full Kalman filter with a

detailed chemistry. To make this computationally achiev-

ablewe use multiple 0D box models which are stacked into

a series of profiles. Which, as mentioned earlier, then gives

us a 2D global assimilation with 21 potential temperature

levels spaced equally in log(0) between 400 K and 2000 K,

and 32 equivalent PV latitudes spaced evenly between -90 °

and 90 ° .

The key point about our generation of pseudo observa-

tions is that we deal with the ratio of the observed con-

centration, Xo, to the analysis concentration, XA, which we

will call the observed concentration ratio, R, not with the

observed concentrations directly (2).

R = xo (2)
XA

Where the analysis concentration is interpolated to the loca-

tion of each observation in turn. We then look at the many

observation points that fall between the bottom of a given

grid box and the top of the current grid box as a distribution

of observed concentration ratios. We then take the observed

concentration ratio for that grid box as the median observed

concentration ratio of this distribution of observed concen-

tration ratios. The median is used as it is not affected by

any large outliers in the distribution of observed concentra-

tion ratios. If there are more than a threshold number of

observations, N, (usually 10) then we just take the median

of the N most accurate observations. The pseudo observa-

tion for a grid box, Xp,_do, is then simply the product of

the median observed concentration ratio, Rm_d_,, and the

current analysis concentration, XA (3).

Xpseudo "= RmedianXA (3)

If we have any gaps in the vertical pseudo observation profile

we simply linearly interpolate the median observed concen-

tration ratio from the available points above and below the

gap. Since this ratio is generally quite close to one the in-

terpolation is rather good, and better than performing an

interpolation in concentration units. The concentration can

change by more than an order of magnitude over the pro-

file and contain strong gradients. In contrast R is generally

close to one and does not contain strong gradients.

4.2. Observation Uncertainties

The uncertainty of the pseudo observation has two com-

ponents. First, the observational uncertainty which is taken

to be the median observed concentration uncertainty of the

distribution of observed concentration uncertainties. Sec-

ond, the representativeness which is taken to he the average
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deviation of the distribution of observed concentrations for

the grid box.

N

1
a_p = ADev(x1...XN) = _ Y_ IXJ - XI (4)

j=l

Tile average deviation, or mean absolute deviation, is a ro-
bust estimator of the width of the distribution [Press et al,,

19921
It has been found desirable to include a moving aver-

age smoothing which involves the current grid box, and the
boxes above and below.

The usefulness of generating pseudo observations in

this way is particularly noticeable for those observational

datasets that have gaps and those that are rather noisy.

4.3. Checking the Errors

It often hard to know if the observation and apriori errors

have been correctly specified. In this particular study the
best characterised error is the representativeness error. The

model error growth is taken to be 5% per time step. The
observation errors are taken directly from the values speci-

fied with the observed concentrations by the retrieval teams.

However, these observational uncertainties could be in error
as was found by Menard et al. [2000]; Menard and Chang

[2000]. A useful check is

<(O-F) 2> _ o_+o_ (5)

5. Kalman Filter

The chemical Kalman filter [Khattatov et al., 1999] al-

lows one to optimally combine model simulations and mea-

surements taking into account their respective uncertainties.

Consider a model of a physical system represented by opera-

tor (generally nonlinear) A4, and let vector x with dimension
N_ be a set of input parameters for the model. These in-

put parameters are used to predict the state of the system,

vector y with dimension Nu:

y = .A/[(x) (6)

Assume that vector x represents the state of a time-

dependent numerical photochemical model, i.e., concentra-

tions of modeled species at model grid points in the atmo-

sphere. In the case of a box model that includes N species,
the dimension of vector x would be N. We will now limit the

discussion to the case when A/_ is used to predict the state

of the system at some future time from past state estimates.

Formally, in this case

X = Xt , y = Xt+_*t (7)

and xt+at = M(t, xt) (8)

Let vector yo contain observations of the state. Usually, the

dimension of yo is less than Nu, the dimension of the model

space, since not all model species are usually observed. The
connection between yo and y can be established through the

so-called observational operator 7/:

yo = 7-/(x) (9)

Combining the above two equations, we get

yo = 7-t(M(x)) (10)

We now assume that that the probability density functions

associated with x and y can be satisfactory approximated

by Gaussian functions:

PDF(y) _ exp ( - (x- xt)TC-l(x - xt) )2 (11)

where xt is the true value of x and C is the corresponding

error covariance matrix. Its diagonal elements are the un-

certainties (standard deviations) of x, and the off-diagonal

elements represent correlation between uncertainties of dif-

ferent elements of vector x. The covariance matrix C is

defined as

c = ((x - xt)(x - xt) _) (12)

where angle brackets represent averaging over all available

realizations of x.

For most practical applications we need to introduce the

linear approximation. In the linear approximation we as-

sume that for small perturbations of the parameter vector

Ax the following is approximately true:

,_iCx + Ax) = _4(x) + L:Ax (13)

Formally, /: is a derivative of A4 with respect to x:

£ = dAA (14)
dx

For small variations of x one can show that the evolution of

error covariance matrix Ct is given by:

Ct+At = _CtE T + Q (15)

Matrix Q is the error covariance matrix introduced to take

into account uncertainties of the model calculations. The

Kalman filter equations are

xt+a_ = A4(t,xt)

Ct+ht = ff-Ct f_T + Q

Xt : Xt nt-Ct_'_T(_t_Ct "_'_T + O)-I(Yo - 7-/xt) (16)

(17)

At the end of each analysis period the model value (xt) and

the corresponding observation (yo) are 'mixed' (see (16))

with weights inversely proportional to their respective errors

to produce the analysis, _t. Then the model is integrated

forward in time starting from the obtained analysis. Once

an observation has been incorporated in the model, the anal-

ysis error covariance should be updated to reflect this (see

(17)). In the absence of observations, the model state is

updated using (8), while evolution of the error covariance is

obtained from the linearized model equations as in (15).

If no observations are available, then

_t= xt (18)

C_=c_ (19)
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6. Skill Scores

Once the data assimilation analyses has been performed

we need to quantify how good the analyses is. This is done

by generating a wide range of statistics. These statistics
compare the observations used in making the analyses with

the analyses itself. These statistics are presented in a web
site automatically created by our software.

The diagnostics/statistics are as follows:
1. Observation Increment The difference between the

first guess and the observations, also known as observed-

minus-background differences or the innovation vector
[Daly, 1991]. This is probably the best measure of forecast
skill.

2. Analysis Increment The difference between the first

guess and the final analyses, also known as analysis-minus-
background differences or the correction vector [Daly, 1991].

This is a good measure of model bias.

3. Cost (jargon for accumulated difference between anal-

yses and observations), both globally and for each single
location in the analyses.

4. Scatter plots of observations against analyses, these

can visually highlight any biases present.

5. Normal Probability Plots of (Observation -

Analysis) Values are useful graphs for assessing whether
data comes from a normal distribution.

6. Quantile-Quantile Plots of observations against

analyses. A quantile-quantile plot is useful for determin-

ing whether two samples come from the same distribu-

tion (whether normally distributed or not). The quantile-
quantile plot has three graphical elements. The pluses are

the quantiles of each sample. The number of pluses is the
number of data values in the smaller sample. The solid

line joins the 25 th and 75 th percentiles of the samples. The
dashed line extends the solid line to the extent of the sample.

Figure 2 shows quantile-quantile plots for the analyses and
observations from the assimilation presented here.

7. Mean Error (ME), Bias, or Analysis-Observations
(A-O), both globally and for each single location in the

analyses.

n

k=l

(20)

where ok denotes the kth observation (or psuedo observa-

tion) and yk the corresponding value from the analyses. This
is a useful measure of the bias between the observations and

analyses. Figure 1 shows examples of bias vertical profiles
for the January 1992 test case considered here. Typically
the bias is an order of magnitude less than concentrations

and within the analyses error.

8. Global Histograms of (Observation - Analysis)
Values The difference between the first guess and the final

analyses.

9. Mean Absolute Error (MAE), both globally and for

each single location in the analyses.

n

MAE = 1 _-_[Yk - Okl (21)
k=l

10. Mean Square Error (MSE), both globally and for

each single location in the analyses.

n

MSE = 1 ___(- yk - ok) 2
n

k=l

(22)

11. Root Mean Square Error (RISE), both globally

and for each single location in the analyses.

RiSE = _ (23)

Figure 1 shows that, as would be expected, in many cases
the bias is anticorrelated with the analysis increment. In

other words, the assimilation process is trying to correct the

bias that exists between the observations and model. This

is just why the bias and analysis increments are most use-

ful statistics in accessing the quality of both the model and

observations.

6.1, A Cautionary Note

Data assimilation can easily cause a serious violation of

conservation of mass if total mass, or total reactive nitro-

gen (NO_= N + NO + NO2+ 2N2Os+ HONO + HNO3+

HO2NO2+ CHaONO2 + CHaO2NO2 + CINO_ + CIONO

+ CIONO2), chlorine (ClOy= Cl + 2C12+ CIO + 2C1202+

CINO2 + C1ONO + CIONO2+ HCI + HOCI + CH3OCI

+ BrCl), bromine (BrOy= Br + 2Br2+ BrO + BrONO
+ BrONO:+ HBr + HOBr + BrCl), or hydrogen (Hu=

2H2+ 2H20+ 4CH4) are not included as control variables.

To overcome this at the start of each timcstep we note the

NOy, CIO_, BrC)_ and Hy, perform the assimilation, and
then renormalise the NOy, ClOy, BrOy and H r. If this is

not done totally unrealistic analyses can easily result.

An example of mass conservation affecting the analyses

can be seen in Figure 1 where there is a noticeable bias in the

H20 analyses. This is because the total IIr is known quite

accurately, and consequently the available observations of

H20 and CH4 can not simultaneously be correct. This dif-

ference between the observations and analyses is highlighted

in the H20 quantile-quantile plot shown in Figure 2, and in

the vertical profiles of bias, O-F, and A-F shown in Figure 1.

Therefore the analyses have conserved mass by slightly re-

ducing the levels of H20 and CH4, as can be seen in Figures 1

and 2. The adjustment in CH4 is less than that in H_O as

CH4 has the lower observation uncertainty.

A similar situation is found in the partitioning of reac-

tive nitrogen. If we examine the vertical profiles of NO,

NO2, N2Os, HNO3 and CIONO2 in Figure 1 we see that

between 10 and 30 mb there is a bias in all these species.

For NO2, N:Os, HNO3 and CIONO2 the analyses values

are all less than the observations. This is because the to-

tal NOr in this region is accurately known and the sum of

the observed NO_, N2Os, HNO3 and CIONO2 observations

would considerably exceed the known NO_. Consequently,

the analyses has slightly reduced the concentrations of NO_,

N205, HNO3 and CIONO2 to ensure NO r conservation. In

the case of C1ONO2 it is very likely that there is an observa-

tional bias as CIONO2 is also a significant component of the

ClOy family for which we also have HCI observations from

HALOE, and between 10 and 30 mb there is no significant

bias in HCI. Therefore the assimilated CIONO_ concentra-

tions, which have a bias relative to the observed CIONO_
concentrations, are consistent with the observed and anal-

ysed HCI concentrations.

7. A Case Study

Let us now consider a case study from January 1992

where the Kalman filter chemical data assimilation system
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described above was used to analyse a vertical atmospheric

profile. The vertical profile was at an equivalent PV latitude

(¢e) of 55°S and consisted of 21 potential temperature (0)

levels spaced equally in log(0) between 400 K and 2000 K.

This equivalent latitude was chosen as it was well observed

during January 1992 by the the Halogen Occultation Exper-

iment (HALOE), the Microwave Limb Sounder (MLS), and

the Cryogenic Limb Array Etalon Sounder (CLAMS) aboard

the Upper Atmosphere Research Satellite (UARS). In addi-

tion, considering just one vertical profile allows a detailed

examination of the diurnal cycle in species such as NO and

NO2.

Figure 1 shows vertical profiles of the chemical analy-

ses produced by data assimilation for 03, N20, NO_ NO2,

N2Os, HNO3, CIONO2, HCI, H20 and CH4 overlaid with

their pseudo observations. Shown on the same horizontal

scale are vertical profiles of the representativeness error, the

observation error and the analyses error. In a separate panel

there are vertical profiles of the bias between the analyses

and the pseudo observations, the analysis increment, (O-F),

and (A-F). These quantities are all defined in Section 6

above.

Several points are noteworthy. As would be expected, the

analyses error is normally always less than the combination

of the observation and representativeness error (Figure 1).

The only exception to this is for some parts of the NO and

NO_ vertical profiles. In each case it occurs above 35 km

where there is an inconsistency between the observed NO,

NO2, and 03 and the theoretical knowledge encapsulated in

the model. In this region the photochemical thcory of NOz

is well known and such an inconsistency did not occur when

ATMOS data was used. It is therefore very likely that there

is a bias in either, or both, the CLAMS NO2 observations

or the HALOE NO observations. Due to the close chemi-

cal coupling between 03 and NOz this has also led to the

largest ozone bias occurring above 40 km. The assimilation

has combined all the information available and highlighted

the inconsistency by the larger (O-F) and (A-F) values and

by increasing the analyses uncertainty.

The biases in NO2, N205, HNO3 and CIONO2 between

10 and 30 mb to ensure NOy conservation have already been

considered in Section 6.1 above.

Figure 2 shows quantilc-quantile plots of observations

against analyses. A quantile-quantile plot is useful for de-

termining whether two samples come from the same distri-

bution (whether normally distributed or not). The quantile-

quantile plot has three graphical elements. The pluses are

the quantiles of each sample. The number of pluses is the

number of data values in the smaller sample. The solid

line joins the 25 th and 75 th percentiles of the samples. The

dashed line extends the solid line to the extent of the sample.

The quantile-quantile plots for O3, NO, N20, HCI and

CH4 all show a good straight line relationship. This means

that the shape of the observation and analyses probability

distribution functions (PDFs) are the same to a very good

approximation. The quantile-quantile plots for CIONO2

shows a disagreement in the dotted line region, i.e. on the

wings of the plot beyond the 75 th percentile, and the plots

for NO:, HNOa and H20 show some minor discrepancies

in the solid line region, these relate to the conservation is-

sues mentioned above. The quantile-quantile plots for N205

shows the biggest discrepancy, the cause of this can be seen

in Figure 1 where there is a large bias between the analyses

and observations, again related to the conservation issues

mentioned above.

The left hand column of plots in Figures 3 and 4 shows

one diurnal cycle of the chemical analyses produced by data

assimilation for a vertical profile at an equivalent PV lati-

tude (_b¢) of 55°S consisting of 21 potential temperature (/_)

levels spaced equally in log(0) between 400 K and 2000 K

overlaid with the raw observations. The right hand column

shows the corresponding analyses uncertainty overlaid with

the observational uncertainty. As would be expected, the

analyses uncertainty is less than the observational uncer-

tainty as information propagates between variables and also

comes from our apriori and theoretical description of the

system.

It is noteworthy to see how the time variation in the anal-

yses uncertainty is very different from species to species.

Some species have very little change in their uncertainty,

whereas species such as NO and NO2 have a strong diur-

nal cycle in their uncertainty. Yet other species without a

significant diurnal cycle, such as HCI, are affected by using

observations of NO and NO2. This shows the propagation

of information between species within data assimilation and

can be seen clearly in Figures 3 and 4. For example, the

uncertainty of NO and HCI (right hand column of figures)

are both affected by the observations of NO2.

8. Summary

This paper gives a detailed description of a Kalman filter

chemical data assimilation system, and an example of its

use from January 1992. The system is designed to aid in

the analysis and quality control of atmospheric observations

made by remote sensing and in-situ instruments. Quality

control has been found to be an essential part of the assim-

ilation.

The assimilation has performed well and highlighted

likely inconsistencies (biases) in the NO, NO2, N205, HNO3

and CIONO2 observations between 10 and 30 rob, in O3 and

NOz above 40 kin, and in H20 and CHa throughout much

of the stratosphere. Such inconsistencies were not encoun-

tered when using high quality ATMOS data and thus show

the value of chemical data assimilation as part of the valida-

tion of remotely sensed chemical data. We hope to use this

system in the validation of ENVISAT data.
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Figure 3. The left hand column shows one diurnal cycle of the chemical analyses for NO, NO_, N_O_,

and HNOs produced by data assimilation for a vertical profile at an equivalent PV latitude (¢_) of

55°S consisting of 21 potential temperature (0) levels spaced equally in log(0) between 400 K and 2000 K

overlaid with the raw observatioas. The right hand column shows the corresponding analyses uncertainty
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Figure 4. The left hand column shows one diurnal cycle of the chemical analyses for CIONO2 HCI,

CH4, H20 and N20 produced by data assimilation for a vertical profile at an equivalent PV latitude

(_be) of 55°S consisting of 21 potential temperature (0) levels spaced equally in log(0) between 400 K and

2000 K overlaid with the raw observations. The right hand column shows the corresponding analyses


